
J. Fluid Mech. (2000), vol. 408, pp. 179–204. Printed in the United Kingdom

c© 2000 Cambridge University Press

179

Polynya flux model solutions incorporating a
parameterization for the collection thickness of

consolidated new ice

By N I C H O L A S R. T. B I G G S,
M I G U E L A. M O R A L E S M A Q U E D A†

AND A N D R E W J. W I L L M O T T
Department of Mathematics, Keele University, Keele, Staffordshire, ST5 5BG, UK

(Received 30 April 1999 and in revised form 16 November 1999)

Previous polynya flux models have specified a constant value for the collection
thickness of frazil ice, H , at the polynya edge. In certain circumstances, this approach
can cause the frazil ice depth, h, within the polynya, to exceed H , a result which
violates assumptions made in the formulation of the ice flux balance equations at
the polynya edge. To overcome this problem, a parameterization for H is derived
in terms of the depth of frazil ice arriving at the polynya edge and the component,
normal to the polynya edge, of the frazil ice velocity relative to the velocity of the
consolidated ice pack. Thus, H is coupled to the unknown polynya edge. Using the
new parameterization for H , an analysis of the unsteady one-dimensional opening
of a coastal polynya is presented. Analytical solutions are also derived, using the
new parameterization for H , for steady-state two-dimensional polynyas adjacent to a
semi-infinite and finite-length coastal barrier, the latter case representing a prototype
island. In all cases, the solutions show close qualitative and quantitative agreement
with those derived using a constant value for H . However, the steady-state two-
dimensional polynya edge can, in certain circumstances, exhibit a corner at the point
where the offshore equilibrium width is reached. Precise conditions for the existence
of a corner are derived in terms of the orientation of the frazil ice velocity (u) and
the consolidated ice velocity (U ). Upper and lower bounds are also obtained for the
area of the steady-state island polynya, and it is shown that over a large range of
orientations of u and U , the area exceeds that associated with the island polynya
with constant H . Finally, two simulations of the St. Lawrence Island Polynya are
presented using the new parameterization for H , and the results are compared with
the H-constant theory.

1. Introduction
Wind-driven coastal polynyas are areas of near ice-free waters which form between

the coast and the offshore consolidated ice pack in predictable, recurrent locations
at times and under climatological conditions where we would expect the waters to
be ice-covered. They arise as a consequence of offshore advection of frazil ice by the
wind and surface ocean currents, creating what is called a latent heat polynya (Smith,
Muench & Pease 1990). The horizontal extent of coastal polynyas can range from a
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few kilometres up to several hundred kilometres (e.g. the North Water Polynya in the
Arctic). Coastal latent heat polynyas are ubiquitous features adjacent to the coast of
Antarctica (Markus & Burns 1995), because of the persistent offshore katabatic winds.
Upwelling of warm water can also contribute to the formation and maintenance of
what is called a sensible heat polynya (Smith et al. 1990). Both sensible and latent
heat mechanisms frequently operate in the maintenance of coastal polynyas (Darby,
Willmott & Mysak 1994; Fichefet & Goosse 1998).

Frazil ice formed within the polynya ‘piles up’ in the form of consolidated new
ice at the offshore edge of the polynya (Lebedev 1968; Pease 1987). The area of a
polynya is determined by the frazil ice production within it and the offshore export
of consolidated new ice. This observation is fundamental in the development of what
are termed ‘polynya flux models’. Unsteady one-dimensional polynya flux models
were formulated by Pease (1987) and Ou (1988). The generalization of unsteady flux
models to two dimensions is discussed by Morales Maqueda & Willmott (1999) and
the references therein. Coastal polynyas around Antarctica are sites where deep water
is produced (Gordon & Comiso 1988; Grumbine 1991). This deep water sinks and
spreads to form part of the global thermohaline circulation. Coarse-resolution global
ocean circulation models (OCMs) do not adequately resolve coastal polynyas, and as
a consequence they do not correctly model the rate of deep water production which
is crucial for a realistic model of the global thermohaline circulation. A method of
overcoming this problem is to introduce into OCMs a parameterization of the surface
buoyancy flux distribution within coastal polynyas. Two-dimensional polynya flux
models offer a possible method for this parameterization.

In all polynya flux models to date, the collection thickness, H , of consolidated new
ice at the edge is assumed to be constant. Clearly, H should be determined by the
dynamics and thermodynamics of the polynya flux model. The purpose of this paper
is to describe a method for doing this, and to then derive expressions for the spin-up
time, alongshore adjustment length scale and area of coastal polynyas adjacent to
a variety of simple coastline configurations. Naming a constant value for H in the
unsteady two-dimensional flux model of Morales Maqueda & Willmott (1999) leads
to a theory which is not completely robust, for when using this theory to determine
the evolution of a two-dimensional polynya from one steady state to a new steady
state, it is possible for the frazil ice depth at the polynya edge to exceed H , thereby
violating the assumptions made in the derivation of the governing ice flux equations.
To see this explicitly, note that in a steady-state polynya flux model, frazil ice on the
verge of reaching the polynya edge can have grown to a depth which is comparable
to, but which does not exceed, the consolidated new ice depth H . An impulsive change
in the direction of the wind stress then causes both the frazil ice and consolidated
new ice to alter their directions of drift. Thus, interior frazil ice now drifts towards
a new evolving polynya edge. It is then possible for interior frazil ice to grow to a
depth greater than H before it reaches the newly adjusting polynya edge. It should
be stressed that this phenomenon is not common in flux models. However, it is clear
that what is missing in the earlier flux model theories is a description of the physics
which controls the conversion process of frazil ice to consolidated new ice.

The plan of the paper is as follows. In § 2, we present a new unified derivation of
the one-dimensional flux theories of Pease (1987) and Ou (1988), which clarifies the
relationship between the two studies. In this section we also derive a new parameteri-
zation for the frazil ice collection thickness H . Section 3 applies the parameterization
for H to the one-dimensional unsteady problem, wherein a polynya opens in a di-
rection perpendicular to a straight coastline; in § 4 we investigate the sensitivity of
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this solution to variations in the air temperature and offshore wind speed. In § 5 and
§ 6, we study solutions of the two-dimensional steady-state polynya flux model, with
the new parameterization for H , for semi-infinite and finite-length straight coastal
barriers, respectively. In § 6, we also present simulations of the St. Lawrence Island
Polynya of the northern Bering Sea. Finally, in § 7, we present a summary of the
results, and a discussion of future research problems in polynya modelling.

2. A parameterization for the collection thickness of consolidated new ice
We begin by placing the one-dimensional time-dependent flux theories of Pease

(1987) and Ou (1988) in a unified context. Consider a one-dimensional polynya, and
suppose for simplicity that it commences its growth at t = 0. We assume that the
frazil ice production rate, F , the frazil ice velocity u = ui, and the consolidated new
ice velocity U = Ui are all uniform, where i is a unit vector in the offshore direction.
The net amount of ice produced within the polynya since it started to open must be
equal to the total amount of frazil ice that has transformed into consolidated new ice,
plus the amount of frazil ice remaining within the polynya. This conservation law for
ice mass can be expressed as∫ t

0

FX dt =

∫ t

0

H

(
U − dX

dt

)
dt+ Vf, (2.1)

where X(t) is the polynya width, H is the collection thickness for consolidated new
ice at the polynya edge, and Vf is the volume of frazil ice, per alongshore unit length,
within the polynya. Differentiating (2.1) with respect to time yields

FX = H

(
U − dX

dt

)
+

dVf
dt

. (2.2)

Pease (1987) assumes that no frazil ice exists within the polynya (i.e. Vf = 0), in which
case (2.2) becomes

dX

dt
=
HU − FX

H
. (2.3)

In contrast, Ou (1988) considers a finite residence time for frazil ice within the polynya
so that

Vf =

∫ X

0

h dx, (2.4)

where h(x, t) is the frazil ice depth at a distance x from the coast at time t. From (2.4),

dVf
dt

=

∫ X

0

∂h

∂t
dx+

dX

dt
h(X, t). (2.5)

Continuity of frazil ice mass is given by

∂h

∂t
+

∂

∂x
(hu) = F,

which upon combining with (2.5) gives

dVf
dt

=
dX

dt
h(X, t) + FX − h(X, t)u, (2.6)
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Figure 1. Schematic of the frazil ice wedge formed at the polynya edge.

where we have also assumed that the frazil ice depth at the coast, h(0, t), is zero.
Substituting (2.6) into (2.2) yields

dX

dt
=
HU − h(X, t)u
H − h(X, t) , (2.7)

which is the equation derived by Ou (1988). In contrast with the above method, Ou
(1988) exploits an ice flux balance across a control volume which is centred at the
evolving polynya edge. However, the relationship between the Pease (1987) and Ou
(1988) formulations of the problem becomes transparent in the derivation above.

Although the above derivation does not demand it, in both Pease (1987) and
Ou (1988), H is assumed to be constant. Indeed, this assumption is carried over to
the two-dimensional flux theory developed by Darby, Willmott & Somerville (1995),
Willmott, Morales Maqueda & Darby (1997) and Morales Maqueda & Willmott
(1999). In one-dimensional flux models with a coast at x = 0, we assume h(0, t) = 0,
and therefore we expect 0 6 h < H throughout the polynya. Clearly, if h = H , (2.7)
becomes invalid. In practice, the pile-up of frazil ice at the polynya edge produces
consolidated new ice of thickness H which is not constant.

To determine a collection law for H , we adopt the approach of Martin & Kauffman
(1981) and Bauer & Martin (1983), in which the authors consider the pile-up of grease
ice at the downwind edge of a lead. In contrast with polynyas, a lead is essentially
a one-dimensional feature, although we might expect the physics controlling the
pile-up of frazil ice to be the same as that controlling grease ice pile-up, as grease
ice simply consists of a mixture of water and frazil ice platelets. Initially we will
obtain a collection law for H in a one-dimensional polynya model, and then we will
generalize it to two dimensions. Figure 1 shows a schematic diagram of frazil ice at
a polynya edge. We consider a frame of reference in which the consolidated new ice
is stationary, and following Bauer & Martin (1983) we determine H by demanding
that the gradient of the vertically integrated momentum flux balances the ice set-up
within this reference frame.

We suppose that there are two layers of fluid: an active upper layer of frazil ice
with density ρi (assumed constant), and a lower layer of water of density ρw (also
assumed constant). Assuming hydrostatic balance and neglecting temporal variations
in the fluid velocities, our governing equations are

uux = − g

ρw
(ρw − ρi)hx, (uh)x = 0, (2.8a, b)
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where u is the vertically averaged frazil ice velocity, and h is the depth of the frazil
ice layer.

The frazil ice commences the pile-up process at x = xA, which is the point nearest
to the offshore ice pack that the frazil ice can reach before its velocity is affected by
the influence of the consolidated new ice. At x = xB , the frazil ice depth is assumed
equal to the consolidated new ice depth, H , so that h|x=xB

= H . The distance xB − xA
is much smaller than the average polynya width (Martin & Kauffman 1981), so we
define the point x = xA to be the polynya edge, but also refer to H as the frazil
ice collection depth or consolidated new ice depth at the polynya edge. Integration of
(2.8a) from x = xA to x = xB yields

1
2
{(uB −U)2 − (uA −U)2} = − g

ρw
(ρw − ρi)(hB − hA), (2.9)

where U is the velocity of the consolidated ice pack, and subscripts denote the
positions at which the variables are evaluated. Assuming that the momentum flux is
brought to zero at the location of the maximum ice set-up (at x = xB), (2.9) reduces
to

1
2
(uA −U)2 =

g

ρw
(ρw − ρi)(hB − hA), (2.10)

whence use of the equality h|x=xB = H , gives

H = hA + c(uA −U)2, (2.11)

where c= ρw/(2g(ρw−ρi)). We adopt the values ρi = 950 kg m−3 and ρw = 1029 kg m−3

of Martin & Kauffman (1981) throughout the subsequent work, which gives c ≈
0.665 m−1 s2. Notice that H depends on both polynya thermodynamics (via hA), and
the wind stress and wind generated currents (via uA and U), and given these inputs,
is completely determined.

An immediate generalization of (2.11) to the case of a two-dimensional polynya is

H = hA + c|(u−U ) · n|2, (2.12)

where n is the unit normal to the polynya edge (directed away from the polynya),
and u now denotes the velocity of the frazil ice at the polynya edge. In this case, H is
given in terms of only the component of the relative velocity (u− U ) normal to the
polynya edge, and the depth of the frazil ice reaching the polynya edge.

In the following sections of the paper we examine polynya flux solutions which
satisfy (2.12). Notice that (2.12) now couples H to the unknown polynya edge through
the normal vector n. Thus, even when u and U are both assumed constant, the
collection depth varies for a two-dimensional polynya because n varies in direction
along the polynya edge. There are two major advantages of using the collection depth
law (2.12). First, (2.12) contains only one parameter, c, the value of which is tightly
constrained. Second, (2.12) ensures that H > hA, in which case we would expect
polynya flux models to be robust using this parameterization. What is not clear, a
priori, is whether (2.12) introduces radically different polynya solutions compared
with the case when H is constant.

3. The unsteady one-dimensional problem
We first examine the one-dimensional time-dependent problem, wherein a polynya

opens in a direction perpendicular to a straight coast. Assume for simplicity that the
polynya commences opening at t = 0. Then from (2.7), the position of the polynya
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edge at time t > 0 is determined by

dX

dt
=
HU − hCu
H − hC (3.1)

for the polynya width X(t), subject to the initial condition X(0) = 0. In (3.1),
hC = h(X, t) denotes the frazil ice depth at the polynya edge.

We consider the case in which u and U are uniform, with u > U > 0, so that the
polynya width has a finite upper bound. The frazil ice depth h in the polynya is found
by integrating the one-dimensional frazil ice mass conservation equation

∂h

∂t
+ u

∂h

∂x
= F, (3.2)

where F is the frazil ice production rate, subject to the coastal boundary condition
h(0, t) = 0.

We consider an infinite straight coastline with the polynya occupying the region x >
0. The one-dimensional nature of the problem provides a corresponding simplification
to the parameterization (2.12) of the consolidated ice depth H , because in this case
the polynya edge is always parallel to the y-axis, and n = i. Thus H is here given by

H = hC + c(u−U)2. (3.3)

For the case when F is constant, the solution of (3.2) subject to the coastal
boundary condition is simply h(x, t) = Fx/u, in which case hC = FX/u. Substituting
this expression for hC , and also (3.3) into (3.1), yields the differential equation

dX

dt
=
cu(u−U)U − FX

cu(u−U)
. (3.4)

We note that the form of this equation is superficially similar to the evolution equation
of Pease (1987), namely (2.3), although it is to be stressed that this resemblance is
coincidental. Pease (1987) assumes a frazil ice drift rate that is unbounded, and a
constant value for the frazil ice collection depth H . In contrast, we assume that the
rate of frazil ice drift, u, is finite, and that H varies and is given by (3.3). The physical
ideas on which the polynya edge evolution equations (2.3) and (3.4) are based are
thus fundamentally distinct.

Integrating (3.4) gives

X = L{1− exp [−Ut/L]}, (3.5)

where

L = (cu/F)U(u−U) (3.6)

is the steady-state or ‘Lebedev–Pease’ width associated with the new frazil ice collec-
tion depth law. Generally, the polynya steady-state width L can be determined from
the requirement that the total frazil ice production within the polynya, FL, balances
the consolidated new ice flux out of the polynya, H |LU, where H |L denotes the
consolidated ice-sheet thickness at the equilibrium width L. This gives L = H |LU/F ,
and replacing H |L with its parameterization (3.3) evaluated at X = L, leads to (3.6).
Under the regime where the consolidated ice-sheet thickness H is assumed constant,
and is hereafter denoted by Hc, the equilibrium width Lc is given by Lc = HcU/F
(Ou 1988; Morales Maqueda & Willmott 1999), and depends only the transport of
consolidated new ice and the rate of frazil ice production. In addition to these two
quantities, the equilibrium width L also depends on the offshore frazil ice velocity
component.
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Figure 2. Temporal evolution of a one-dimensional polynya edge for two values of the ratio U/u:
(a) 0.2, (b) 0.6.

Notice that L > 0, since by assumption u > U, and furthermore that X → L
as t → ∞, from (3.5). However, a finite polynya spin-up time can be defined by
considering the time tε required for the polynya to open to a particular fraction of L,
namely X(tε) ≡ Xε = (1− ε)L, where 0 < ε� 1. From (3.5) it is readily shown that

tε = − L
U

ln ε. (3.7)

The quantity L/U is simply the time required for the consolidated new ice to traverse
the steady-state width of the polynya, and is typically of the order of a few hours to
one day at most.

It is informative to compare the spin-up time (3.7) with that obtained from the
H-constant theory in which H = Hc. Denoting the spin-up time for the H-constant
theory by tεc, it is found by integrating (3.1), with H replaced by Hc, that

tεc =
Lc

u
(1− ε)− Lc

[
1

U
− 1

u

]
ln ε. (3.8)

For a valid comparison of tε and tεc, or indeed of any of the characteristic length scales
or time scales of the two problems, we must ensure that the depth of consolidated new
ice at the new equilibrium polynya edge, namely H |L, is equal to Hc, the consolidated
new ice depth at the H-constant equilibrium polynya edge. The velocities u and
U are mostly restricted to those which give the consolidated new ice depth Hc as
0.07–0.35 m, which is consistent with observations (Martin 1981). This choice of Hc

also clearly leads to identical equilibrium widths L and Lc. Then, from (3.7) and (3.8),

tε − tεc = −(L/u)[(1− ε) + ln ε] > 0,

which shows that spin-up time associated with the collection depth parameterization
(3.3) is longer than that given by the H-constant theory. Further, we see that

tε − tεc
tε

=
U

u

[
1− ε
ln ε

+ 1

]
. U/u < 1, (3.9)

so that the relative difference between the time scales tε and tεc depends solely on the
ratio of the offshore consolidated new ice and frazil ice velocities.

The relationship between tε and tεc is illustrated clearly in figure 2, which shows
the evolution of the one-dimensional polynya edge to its steady-state width for the
new and H-constant representations of the consolidated new ice collection depth H ,
and two values of the ratio U/u. Following Morales Maqueda & Willmott (1999),
we take the frazil ice production rate as F = 0.27 m day−1. For figure 2(a), we
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Figure 3. The discrepancy between the new and H-constant one-dimensional polynya edges as
a function of time, for various values of the ratio U/u. In each case, the new and H-constant
equilibrium widths, L and Lc, have been chosen equal through choice of Hc.

choose u = 0.6 m s−1 and U = 0.12 m s−1, which gives the ratio U/u = 0.2, and the
equilibrium width L = 7.35 km. From (3.9), we expect the difference in the adjustment
time scales to be minimal, which is indeed confirmed by the plot. In fact, using
ε = 0.01 in (3.7) and (3.8) gives tε ≈ 78 h and tεc ≈ 66 h, respectively. In contrast,
in figure 2(b), U is chosen to be 0.36 m s−1 so that U/u = 0.6. Now (3.9) predicts
that the H-constant theory produces a polynya edge that approaches its asymptotic
width considerably more quickly than that found with the new parameterization, and
this is again confirmed by the plot. In this case, the time scales are tε ≈ 39 h and
tεc ≈ 21 h.

The plot in figure 3 shows to what extent the evolution of the polynya edges
described by the new and H-constant theory can differ. With u = 0.6 m s−1 and for
small values of U/u ≈ 0.2, the difference in the location of the polynya edges during
the spin-up is minor, as predicted by (3.9). However, as U approaches u, there are
times during the spin-up when the location of the polynya edges is significantly
different; for example, when U/u = 0.6, at t ≈ 12 h, this difference is as large as
0.13L.

4. Sensitivity to wind speed and air temperature
To study the sensitivity of the one-dimensional polynya model with the new frazil

ice collection depth law (3.3), we determine how the equilibrium width L and the
spin-up time t0.05 (the time taken for the polynya to open to 0.95L) vary when the
wind speed (Ua) and the air temperature (Ta) are independently varied. Following
Pease (1987), the rate of frazil ice production, F , is determined by

F =
−[σeaT

4
a − Qlu + ρaChCpUa(Ta − Tw)]

ρiLf
,

where σ = 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann constant, ea = 0.95
is the emissivity of the air, Qlu = 301 W m−2 is the upward long-wave radiation,
ρa = 1.30 kg m−3 is the air density, Ch = 2.0×10−3 is the sensible heat coefficient, Cp =

1004 J deg−1 kg−1 is the specific heat of air, Tw = −1.8◦C is the water temperature,
ρi = 0.95×103 kg m−3 is the ice density, and Lf = 3.34×105 J kg−1 is the latent heat of
fusion. Following Pease (1987), the consolidated new ice velocity is U = 0.03Ua, and
the frazil ice velocity is u = 2U (Morales Maqueda & Willmott 1999). For comparison
purposes, solutions are also presented for a polynya in which a constant frazil ice
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Figure 4. Contour plots of the new and H-constant equilibrium widths L and Lc, (a) and (b),
respectively (in km), and the corresponding spin-up times t0.05 and t0.05

c , (c) and (d) respectively
(in hours), as a function of air temperature Ta (◦C) and wind speed Ua (m s−1). For plots (b) and
(d), the constant collection thickness Hc is chosen so that L = Lc at the control wind speed of
Ua = 20 m s−1.

collection depth, Hc, is adopted. Hc is chosen equal to 0.48 m so that for the standard
wind speed of Pease (1987), Ua = 20 m s−1, the frazil ice collecting at the new and
H-constant equilibrium widths, L = (cu/F)U(u−U) and Lc = HcU/F respectively, is
of equal depths. This is equivalent to choosing the value of Hc so that the equilibrium
widths are equal. We note that although the value Hc = 0.48 m is rather large, this
choice has the advantage that it allows direct comparison with the results of Pease
(1987).

Figure 4 shows that the new equilibrium width L is more sensitive to variations
in wind speed than the H-constant width Lc. When −40◦C . Ta . −10◦C, Lc is
virtually insensitive to changes in Ua, because both U and F increase linearly with
increasing Ua. Increasing U tends to open the polynya, while increasing F tends to
close it, and the two processes cancel. In contrast, L grows quadratically with Ua

(with u = 2U and U = 0.03Ua we find L = 0.000054(c/F)U3
a ), and for Ua & 20 m s−1,

L > Lc. For example, when Ua = 25 m s−1 and Ta = −20◦C, L ≈ 140 km while
Lc ≈ 90 km. The effect on L of varying the air temperature is comparable to its effect
on Lc, since the only dependence on Ta is through the factor F−1 which occurs in
an identical manner in the expressions for L and Lc. For lower temperatures, the
frazil ice production is increased and smaller polynyas are produced, whilst warmer
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air temperatures cause less frazil ice to be produced and the polynya will grow larger
before reaching equilibrium.

The time taken for the polynya to reach 95% of its equilibrium width is also
a strong function of both wind speed and air temperature. For colder air, the ice
production rate increases, resulting in smaller polynyas whose steady-state widths
take shorter lengths of time to achieve. Conversely, for warmer air temperatures,
the spin-up times are longer since the polynyas formed are correspondingly larger.
These characteristics are shared by the H-constant spin-up time t0.05

c . Where the two
time-scales differ considerably however, is in their response to changes in wind speed,
for while t0.05

c decreases with Ua, for t0.05 the effect is reversed. For example, with the
air temperature equal to −20◦C and the wind speed at 20 m s−1, t0.05 ≈ 122 h and
t0.05
c ≈ 81 h. Increasing Ua by 5 m s−1 causes an increase in the new spin-up time to

about 156 h, but a decrease in the H-constant spin-up time to 66 h. This behaviour
is due to the increased dependence of L (compared with Lc) on the wind speed. In
the H-constant theory, an increase in Ua leads to a linear increase in both U and u,
and (3.8) shows that t0.05

c depends on Ua via the factor F−1. On the other hand, (3.7)
shows that t0.05 grows linearly with Ua.

To summarize, both the maximum polynya width L and the spin-up time t0.05

associated with the polynya solution using the new frazil ice collection depth law
(3.3) are affected by air temperature in a similar way to their H-constant counterparts,
Lc and t0.05

c . This is because the air temperature only appears through the factor F−1

which occurs in the expressions for L and Lc (and thus t0.05 and t0.05
c ) identically. The

differences in the steady-state polynya widths and the spin-up times depend strongly
on wind speed, because L increases quadratically with Ua, whereas Lc is almost
independent of Ua when Ua & 10 m s−1. For wind speeds greater than about 20 m s−1,
L and t0.05 both exceed Lc and t0.05

c , respectively. Around the coast of Antarctica,
where the offshore katabatic wind speed is large, these results suggest that polynya
flux models should incorporate the new frazil ice collection depth law.

5. Two-dimensional steady-state polynya adjacent to a straight semi-infinite
coastal barrier

For the steady-state problem, the polynya edge is a curve along which the normal
fluxes of frazil and consolidated new ice balance. Thus, writing n as the unit vector
perpendicular to the polynya edge, directed away from the interior of the polynya,
we demand that

(HU ) · n = (hCu) · n, (5.1)

where U = (U,V ) is the consolidated new ice velocity and u = (u, v) is the frazil ice
velocity.

Morales Maqueda & Willmott (1999) formulate a general time-dependent polynya
flux theory, and in particular they show that if C(R, t) = constant denotes the polynya
edge, then it satisfies

∇C ·
{
HU − hCu
H − hC

}
+
∂C
∂t

= 0, (5.2)

where R is the position vector of any point on the edge. The characteristic curves of
(5.2) are given by

dR

dt
=
HU − hCu
H − hC . (5.3)
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In this section we will focus on steady solutions of (5.2), when H is given by (2.12).
For the steady problem, let the coordinates of any point on C(R) = constant be given
by (X,Y (X)). Then C is given by the solution of

dY

dX
=
HV − hCv
HU − hCu , (5.4)

where, from (2.12), H satisfies

H = hC + c|(u−U ) · n|2. (5.5)

Substituting (5.5) into (5.4) yields a cubic equation for (dY /dX) which is given by{
hC +

c[(u−U)dY /dX − (v − V )]2

[1 + (dY /dX)2]

}[
U

dY

dX
− V

]
= hC

[
u

dY

dX
− v
]
. (5.6)

Now consider a semi-infinite straight coastline coinciding with the negative y-axis,
and assume that the polynya edge lies in the quadrant x > 0, y < 0, and passes
through the origin located at the end of the coastal wall. When u and U are both
constant, the steady-state frazil ice mass conservation equation is

u
∂h

∂x
+ v

∂h

∂y
= F. (5.7)

The solution of (5.7) satisfying h(0, y) = 0, y < 0, is given by h = Fx/u, provided
that F is constant. Therefore, hC = FX/u, which upon substitution into (5.6) and
factorising, yields three possible differential equations for the polynya edge, namely

dY1

dX
=
v − V
u−U ,

dY2

dX
=
−A− [B2 − 4X(X − C)]1/2

2(X − L)
,

dY3

dX
=
−A+ [B2 − 4X(X − C)]1/2

2(X − L)
,

where for brevity we have introduced the notation

A = (cu/F)[U(v − V ) + V (u−U)],

B = (cu/F)[U(v − V )− V (u−U)],

C = (cu/F)[U(u−U) + V (v − V )],

and L = (cu/F)U(u−U) denotes the equilibrium width.
The straight line solution Y1(X) = [(v − V )/(u − U)]X is oriented parallel to the

relative velocity u − U . For this solution, the normal is such that (u − U ) · n = 0,
in which case H = hC , and the differential equation for Y1 is recovered immediately
from (5.4). From a physical point of view, this solution can be discarded, for the
following reason. Let tan α = v/u and tan θ = V/U, where α and θ denote the angles
(measured positive in a counterclockwise sense) made by u and U with the positive
x-axis, respectively. For wind speeds of 3 m s−1, or more, frazil ice is observed to drift
along wind rows associated with Langmuir circulations Martin & Kauffman (1981).
The wind rows are oriented at an angle of 13◦, or less, to the right of the wind
stress (in the Northern Hemisphere). In this study we will assume that u is parallel
to the surface wind stress. However, the consolidated new ice drift is influenced by
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the structure of the wind-driven surface Ekman layer, and hence U is oriented at
an angle of 28◦ to the right of the wind stress (in the Northern Hemisphere). More
generally, we assume only that U is oriented to the right of u, so that α > θ. Then
since

v

u
− v − V
u−U =

|u||U | sin (α− θ)

u(u−U)
> 0,

we see that Y1(X) is oriented to the left of u. The frazil ice trajectory passing through
the origin must lie in the consolidated new ice region and therefore starting from a
polynya of zero width, we can never spin-up to the solution Y1(X).

We can also reject the solution Y2(X) on similar grounds to Y1(X). Notice that at
the origin dY2/dX = (v−V )/(u−U). In fact dY2/dX > (v−V )/(u−U) for x ∈ [0, L],
and as x → L, dY2/dX → ∞. The solution Y2(X) lies inside the quadrant X > 0,
Y > 0 and it smoothly attains its asymptotic width X = L. However, because the
frazil ice trajectory passing through the origin lies wholly within the consolidated new
ice region we reject this solution for the same reason as rejecting Y1(X).

Now consider the differential equation for Y3(X), where for notational convenience,
we henceforth drop the subscript 3:

dY

dX
=
−A+ [B2 − 4X(X − C)]1/2

2(X − L)
, Y (0) = 0. (5.8)

It is straightforward to integrate (5.8), subject to the condition Y (0) = 0, to obtain

2Y (X) = [B2 − 4X(X − C)]1/2 − B + (2L− C) arctan (−C/B)

−(2L− C) arctan

[
2X − C

[B2 − 4X(X − C)]1/2

]
+ (A− |A|) ln

(
L

L−X
)

−|A| ln
[
B2 − 4LX + 2C(X + L) + |A|[B2 − 4X(X − C)]1/2

B2 + 2CL+ |A|B
]
, (5.9)

where we have used the fact that B = (cu/F)|U ||u| sin (α− θ) > 0, since (α− θ) > 0.

The solution (5.9) clearly exhibits three distinct types of behaviour, depending on
the sign of the constant A. Suppose, first, that A < 0. Then as X → L− (i.e. approaches
the equilibrium width L from below), the denominator of the right-hand side of (5.8)
approaches zero from below, while the numerator tends to −A+[B2−4L(L−C)]1/2 =
−A+ [A2]1/2 = −2A > 0. Thus dY /dX → −∞ as X → L−, and the polynya reaches
its equilibrium width asymptotically, and from (5.9) it achieves this width as Y → −∞.
However, now suppose that A > 0. Now as X → L−, the numerator of the right-hand
side of (5.8) tends to −A + [B2 − 4L(L − C)]1/2 = −A + [A2]1/2 = 0. Application of
l’Hôpital’s rule then shows that dY /dX = −(2L − C)/A > −∞ as X → L−. In this
case, (5.9) shows that the polynya edge reaches its steady-state width at Y = −YL,
where

YL = L

∣∣∣∣tan θ + (γ − π/2)(1− tan θ tan γ)− sin (θ + γ)

cos θ cos γ
ln

[
sin (θ + γ)

cos θ

]∣∣∣∣ , (5.10)

and γ denotes the angle the relative velocity u − U makes with the positive x-axis.
The polynya edge thus exhibits a corner at (L,−YL); for Y < −YL, the equation
of the edge is the straight line X = L. Recalling that tan θ = V/U, we see that
A = (cu/F)|U ||u−U | sin (θ + γ), and the requirement for the existence of a corner is
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Figure 5. Plot of the curves (θ + γ) = 0 for various values of the ratio |U |/|u|. Points to the right
of the curves correspond to (θ + γ) > 0.

simply θ + γ > 0. We can re-write this inequality in terms of α and θ by noting that

γ = θ + arcsin

[ |u|
|u−U | sin (α− θ)

]
,

in which case a corner will occur on the edge when

2θ + arcsin

[ |u|
|u−U | sin (α− θ)

]
> 0.

Figure 5 shows the line θ + γ = 0 in the (α, θ)-plane for a variety of values of the
ratio |U |/|u|; points to the right of these lines correspond to θ + γ positive, giving a
corner. The range of (α, θ) for which a corner is produced is greatest when either |u|
and |U | are comparable in magnitude, or when they differ by a factor of 2 or more.
Intermediate values of |U |/|u| (≈ 0.66) minimize the likelihood of a corner.

Finally, consider the case when A = 0, which is equivalent to θ + γ = 0. As
X → L, (5.8) shows that dY /dX → −∞, and once again the polynya edge smoothly
approaches X = L. However, the polynya edge solution corresponding to taking the
limit A → 0 in (5.9) is finite at X = L, so that the polynya edge in fact reaches its
equilibrium width at Y = −Y 0

L , where

Y 0
L = L| tan θ − (θ + π/2) sec2 θ| (5.11)

is obtained by considering the limit (θ + γ)→ 0 in (5.10).
Why does the sign of θ + γ determine whether, or not, C has a corner? To answer

this, we consider the depth of frazil ice arriving at any point P on C. Solving (5.6)
for hC , we obtain

hC =
c[(u−U)dY /dX − (v − V )][UdY /dX − V ]

[1 + (dY /dX)2]
,

and if φ denotes the angle between the tangent to C at P and the positive x-axis, we
find that

hC = 1
2
c|U ||(u−U )|[cos (θ − γ)− cos (θ + γ − 2φ)]. (5.12)
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Figure 6. The effect of rotating the directions of frazil ice drift and consolidated new ice drift on
the new polynya edge solutions adjacent to a semi-infinite straight coastline (vertical bold line). For
all cases, F = 0.27 m day−1, |u| = 0.6 m s−1, |U | = 0.3 m s−1, and the angle between u and U is fixed
at 28◦.

For a given polynya edge, α and θ and thus γ are fixed, and when φ = φmax =
(θ + γ − π)/2, hC attains a maximum value

hmax
C = 1

2
c|U ||(u−U )|[1 + cos (θ − γ)]. (5.13)

Notice that (5.13) is only achieved at the equilibrium width when θ + γ = 0, when
φmax = −π/2. More generally,

hmax
C − hC(L) = c|U ||(u−U )|{ 1

2
[1 + cos (θ − γ)]− cos θ cos γ}

= c|U ||(u−U )| sin2[(θ + γ)/2] > 0.

If θ+ γ < 0, hmax
C is reached when φmax < −π/2, which is impossible since φ is clearly

bounded below by −π/2. Alternatively, if θ+ γ > 0, hmax
C > hC(L), and the maximum

frazil ice depth occurs at a point further offshore, where φmax > −π/2. At this point
the solution breaks down, since its continuation would require frazil ice of depth
hC > hmax

C . The presence of the corner on C when θ + γ > 0 leads to a solution in
which hC < hmax

C , for all points on C.
Figure 6 shows plots of (5.9) for various values of α and θ, which exhibit the types of

behaviour discussed above. In figure 6, F = 0.27 m day−1 (following Morales Maqueda
& Willmott 1999), |U | = 0.3 m s−1, |u| = 2|U |, α−θ = 28◦ for all the solutions, and the
four edges correspond to α = −9◦, 1◦, 11◦, 21◦, which give θ + γ ≈ −23◦,−3◦, 17◦, 37◦
respectively. The polynya edges shown in figure 6 exhibit a corner when θ + γ > 0,
but when θ + γ 6 0, the edge reaches the asymptotic width X = L smoothly.

Also shown (figure 7) is a comparison between the polynya edge solutions for the
new and H-constant formulations of the frazil ice collection depth H . In figure 7,
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Figure 7. New and H-constant polynya edge solutions adjacent to a semi-infinite straight coastline
(vertical bold line). In (a), α = 11◦ and θ = −17◦, while in (b), α = 1◦ and θ = −27◦. F , |u|, and |U |
are the same as in the previous figure.

|U |, |u|, and F are as in figure 6. In figure 7(a), the orientations of the frazil ice
and consolidated new ice velocities are given by α = 11◦ and θ = −17◦, so that
θ + γ ≈ 27◦ > 0. Hence a corner is produced on the new edge. Notice that the area
of the new polynya in the finite region Λ = {(x, y): 0 < x < L, −∞ < −y∗ < y < 0},
where −y∗ 6 −YL, is larger than the area of the H-constant polynya. In contrast,
the edge plotted in figure 7(b) is generated for α = 1◦ and θ = −27◦ so that
θ + γ ≈ −3◦ < 0, and no corner is exhibited. The difference in this case between
the H-constant and new solutions is minimal, although the area contained by the
H-constant edge appears greater. Indeed, if a corner is exhibited by the polynya
edge, the area contained by it in the finite region Λ generally exceeds the area of the
correspondingH-constant polynya, while the reverse happens if no corner is produced.
Figure 8 shows this idea clearly for the particular parameter values |U | = 0.2 m s−1,
|u| = 0.6 m s−1, and F = 0.27 m day−1, and a range of values of θ, with α − θ = 28◦.
In figure 8, the unbroken line represents the area contained by the new polynya edge,
while the dashed line represents the area contained by the H-constant polynya edge.
The polynya area exceeds the H-constant polynya area for θ & −16◦ whilst a corner
is exhibited in the new polynya edge for θ & −20◦.

Morales Maqueda & Willmott (1999) show the importance of the alongshore
adjustment length-scale associated with a two-dimensional polynya in controlling the
relationship between variations in the orientation of the coastline and the shape
of the polynya edge. Let us now determine the alongshore adjustment length scale,
La, associated with the solution (5.9). To this end, we introduce a small coastline
perturbation which produces a corresponding perturbation in the polynya edge.
Suppose that the coastal boundary is given by the straight line x = 0 except in
the interval I = {y: y1 < y < y2}, where the coastline is given by x = f(y), with
|f(y)| � L, and f(y1) = f(y2) = 0. In order to ensure that frazil ice leaving the



194 N. R. T. Biggs, M. A. Morales Maqueda and A. J. Willmott

–40 –30 –20

H-constant

New

200

150

100

50

10 20 30

h (deg.)

–10

Area (km2)

Figure 8. New and H-constant polynya areas (in km2) contained in the finite regions bounded by the
coastline, the polynya edge, and a line perpendicular to the coast 25 km (in the negative y-direction)
from the polynya coastal intersection point, for varying θ. |u| = 0.6 m s−1, |U | = 0.3 m s−1, F is the
same as in previous plots, and the frazil ice drifts in a direction α = 28◦ + θ. A corner is exhibited
in the polynya edge when θ & −20.3◦.

coastline cannot subsequently intercept it again, we demand that |df/dy| < | tan α|.
Now, the coordinates of any point on the equilibrium polynya edge can be written as
P = (L+X ′, Y ), where X ′ is the perturbation induced by the coastline irregularities,
and |X ′| � L. Then the frazil ice trajectory intercepting P is given by y = (v/u)[x−
(L + X ′)] + Y , and leaves the coastal point Q whose x-coordinate is, to first order
in the perturbation, x′Q = f(Y − (v/u)L). Thus, the offshore distance travelled by the
frazil ice on the trajectory QP is L+ X ′ − f(Y − (v/u)L), and the thickness of frazil
ice arriving at P is given by hC = (F/u)L + (F/u){X ′ − f(Y − (v/u)L)}. From (5.4)
we can then show that X ′ satisfies the differential equation

L sin (θ + γ)

cos θ cos γ

dX ′

dY
= −[X ′ − f(Y − (v/u)L)], (5.14)

again to first order in the perturbation. Provided θ + γ 6= 0, (5.14) can be written as

dX ′

dY
= [X ′ − f(Y − (v/u)L)]/La, (5.15)

where

La =
−L sin (θ + γ)

cos θ cos γ
(5.16)

is the alongshore adjustment length scale that controls how sensitive the steady-state
polynya edge is to small irregularities in the coastline. Rewriting (5.16) as

La = −L[tan θ + tan γ] = −L
[
V

U
+
v − V
u−U

]
leads to a geometrical visualization of this quantity. A consolidated ice trajectory
leaving the coast from y = y∗ will, upon reaching the equilibrium width L, have
travelled an alongshore distance LV/U from y = y∗. Similarly, a trajectory leaving
the coast from y = y∗ parallel to the relative velocity u − U , will have travelled an
alongshore distance L(v−V )/(u−U) from y = y∗. The magnitude of the alongshore
adjustment length scale |La| is then simply the sum of these two distances.
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A physical interpretation of the quantity La is, however, afforded by the following
analysis. The normal vector to the unperturbed equilibrium edge X = L is simply
n = (1, 0), while frazil ice reaching this steady-state edge is of depth hC(L) ≡ h

(L)
C =

c|U ||u−U | cos θ cos γ. Perturbing the coastal profile, as we have seen above, causes a
corresponding perturbation in the polynya edge. This can be represented by replacing
n with n′ = (cos δ, sin δ), where 0 < |δ| � 1 is measured positive in a counterclockwise
sense from the positive x-axis. Denoting the depth of frazil ice reaching the perturbed

polynya edge by h(L)
C

′
, it is then easy to show that

h
(L)
C

′
= h

(L)
C − δFu L

a. (5.17)

Letting δ → 0 in (5.17) leads to

dρ

dσ
= −La,

where σ is the angle between n and the positive x-axis, and ρ = uh
(L)
C /F is the distance

travelled by frazil ice from the coast to the polynya edge.
These ideas prove important in determining X ′, for we must consider the cases

θ+ γ < 0 and θ+ γ > 0 separately. If θ+ γ < 0, then from (5.16), La > 0. In this case,
we must integrate (5.15) in the negative y-direction from Y = Y2, since for Y > Y2,
the polynya edge is unaffected by the coastal perturbation, and satisfies X = L. Why
is this so? Suppose that this is not the case, and that the polynya edge differs from
X = L for Y > Y2. At some distance away in the positive y-direction, the edge
must approach the steady-state width X = L, and will do so from either X < L or
X > L. If it approaches X = L from below (X < L), then the angle n makes with
the positive x-axis here is negative, and (5.17) implies that the depth of frazil ice
reaching the polynya edge here is greater than that reaching the width X = L. This is
clearly impossible since the frazil ice depth h(x) = Fx/u is a monotonically increasing
function of offshore distance, x. A similar contradiction arises if the polynya edge
asymptotes towards X = L from above (X > L). We deduce that in the case where
La > 0, the polynya edge is given by X = L for Y > Y2, and (5.15) is then integrated
with the boundary condition X ′(Y2) = 0 to give

X ′ = exp [−(Y2 − Y )/La]

∫ Y2

Y

1

La
f(Z − (v/u)L) exp [(Y2 − Z)/La] dZ.

The quantity La influences X ′ in two ways. The factor 1/La in the integrand modulates
the amplitude of X ′, whilst the presence of the term exp [−(Y2 − Y )/La] provides an
e-folding length scale for the decay of X ′ in the negative y-direction.

In contrast, if θ + γ > 0, then from (5.16), La < 0. For reasons analogous to those
described above, we now integrate (5.15) in the positive y-direction from Y = Y1

where X ′(Y1) = 0, since X = L for Y 6 Y1. We now find that

X ′ = − exp [(Y − Y1)/L
a]

∫ Y

Y1

1

La
f(Z − (v/u)L) exp [−(Z − Y1)/L

a] dZ.

Again in this expression, the factor 1/La in the integrand modulates the amplitude
of X ′, but now the term exp [(Y − Y1)/L

a] provides an e-folding length scale for the
decay of X ′ in the positive y-direction.

When θ + γ = 0, the differential equation (5.14) for the polynya edge perturbation
X ′ reduces to an algebraic equation, with solution X ′ = f(Y − (v/u)L). In this special
case, the alongshore adjustment length-scale La is zero (which can also be seen by
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taking the appropriate limit of (5.16)), and the polynya edge reproduces the coastal
perturbation precisely.

The change of character in the perturbed steady-state edge dependent upon the sign
of (θ + γ) presents a marked departure from that of the H-constant perturbed edge,
which decays exponentially in the negative y-direction regardless (Morales Maqueda
& Willmott 1999). The contrasting behaviour described above is a consequence of the
new frazil ice collection depth law, and in particular the increased dependence of H
upon the gradient of the polynya edge. However, in both cases, coastal irregularities
with characteristic alongshore length scales smaller than |La| will have almost no
effect on the steady-state polynya edge.

6. Steady-state polynya adjacent to a finite-length straight coastal barrier
We now consider the case where the coast is a line-segment of finite length D

located on the y-axis, with end points (0, 0) and (0, D), with the polynya lying in the
region x > 0. This coastal configuration can be thought of as an idealized island. In
the region bounded by the straight lines M1 = {(x, y):Vx − Uy = 0, x < 0}, M2 =
{(x, y):Vx−U(y−D) = 0, x < 0} and x = 0, we assume that the ice is motionless; in
practice, ice in this region is often of first-year type. The polynya lies within the region
bounded by N1 = {(x, y):Vx−Uy = 0, x > 0}, N2 = {(x, y):Vx−U(y−D) = 0, x > 0}
and x = 0. Clearly, the polynya edge (C) either passes through (0, D) and does not
intersect N2 again, or C includes some portion of N2. The latter case can be rejected
because for any point on N2 satisfying the flux balance (HU ) · n = (hCu) · n, we see
that hCu · n = 0, which in turn implies that hC = 0, because we assume that u and U
are not parallel (in fact, we assume that u is oriented to the left of U ). Therefore the
only point on N2 that also lies on C is the coastal point (0, D).

The polynya is divided into two distinct regions separated by the frazil trajectory
emanating from the origin, namely Γ = {(x, y): vx − uy = 0, x > 0}. Let A1 denote
the area of the polynya lying in region 1 defined by {(x, y): vx−uy < 0}. Similarly, let
A2 denote the area of the polynya lying in region 2 defined by {(x, y): vx − uy > 0}.
Points on the polynya edge in region 1 receive frazil ice from the island coastline,
and therefore in this region the equation of C is given by (5.9), with the appropriate
translation of the y-coordinate to accommodate the boundary condition Y (D) = 0.
In region 2, however, the frazil trajectories intercepting C emanate from the ice
pack boundary N1, since the angle between the direction of travel of the frazil and
consolidated new ice is positive. The point of intersection P = (X int, Y int) of C with
Γ is easily found analytically, provided the island is sufficiently long, and the frazil ice
and consolidated new ice velocities are such that C has attained its asymptotic width.
To be precise, if there is a corner on C at (L,D−YL) (for which we require θ+ γ > 0),
then (X int, Y int) = (L, (v/u)L), provided (v/u)L < D − YL. If (v/u)L > D − YL, then
Γ strikes C before it has reached the width L, and the coordinates of P satisfy a
transcendental equation. In a similar manner, we see that if the corresponding semi-
infinite coastline polynya ice edge does not exhibit a corner, then X → L as Y → −∞,
and once again the coordinates of P satisfy a transcendental equation. However, for
long islands (D � |La|) the coordinates of P can be approximated by (L, (v/u)L).

The portion of C lying in region 2 can be determined by introducing the rotated
coordinates

xr = −x sin θ + y cos θ, yr = −x sin θ − y cos θ,

so that the negative yr-axis then coincides with the line N1. In this new rotated
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reference frame, the frazil ice velocity components are given by ur = |u| sin (α−θ) and
vr = −|u| cos (α− θ), while the consolidated new ice velocity components are Ur = 0
and Vr = −|U |. With respect to the rotated coordinates, let C be given by Yr = Yr(Xr)
where Yr satisfies the appropriately modified differential equation

dYr
dXr

=
−Ar + [A2

r − 4Xr(Xr − Cr)]1/2

2Xr

. (6.1)

In (6.1), Ar and Cr are constants which satisfy Ar = (cur/F)urVr and Cr = (cur/F)Vr
(vr−Vr). Notice that Ar < 0, so that the polynya edge smoothly reaches the equilibrium
width Xr = (cur/F)Ur(ur−Ur) = 0, that is, the ice pack boundary N1. The differential
equation (6.1) is solved subject to the boundary condition Y (X int

r ) = Y int
r where

X int
r = −X int sin θ+ Y int cos θ and Y int

r = −(X int cos θ+ Y int sin θ) are the coordinates
of the point of intersection of C and Γ with respect to the rotated coordinate frame.
We find that in region 2, C is given by

2[Yr(Xr)− Y int
r ] = [A2

r − 4Xr(Xr − Cr)]1/2 − [A2
r − 4X int

r (X int
r − Cr)]1/2

+Cr

{
arctan

[
2Xr − Cr

[A2
r − 4Xr(Xr − Cr)]1/2

]
− arctan

[
2X int

r − Cr
[A2

r − 4X int
r (X int

r − Cr)]1/2

]}

+Ar ln

{(
X int
r

Xr

)2 [
A2
r + 2CrXr − Ar[A2

r − 4Xr(Xr − Cr)]1/2

A2
r + 2CrX int

r − Ar[A2
r − 4X int

r (X int
r − Cr)]1/2

]}
. (6.2)

Figure 9 shows two particular steady-state polynya edges produced by the idealized
island geometry. The island length is D = 25 km, and u, U and F are as in figure 7.
Notice that the transition of the polynya edge from region 1 to 2 is not smooth, as the
gradient of the edge has a discontinuity at (X,Y ) = (X int, Y int). This is a consequence
of the increased coupling of the frazil ice collection depth H with the gradient of the
polynya edge solution, and is in contrast with the H-constant solution, in which C is
smooth throughout its extent.

The total area, AT = A1 + A2, of the steady-state polynya can be determined by
integration of the equation of conservation of frazil ice mass over the entire polynya,
which gives ∫ ∫

AT

∇ · (hCu) dS =

∫ ∫
AT

F dS.

With the aid of the divergence theorem, when the frazil ice production rate F is
spatially constant, this can be simplified to

AT =
1

F

∫
C
hCu · n ds, (6.3)

where s is arc length measured along C. The ice flux balance (HU ) · n = (hCu) · n
which holds on the polynya edge allows (6.3) to be immediately re-written as

AT =
1

F

∫
C
HU · n ds. (6.4)

For the H-constant case of constant frazil ice collection depth, H ≡ Hc, the area, A(c)
T ,

of a polynya lying adjacent to a straight coastal barrier of finite length D is, from
(6.4),

A
(c)
T = DHcU/F, (6.5)
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Figure 9. New and H-constant polynya edge solutions adjacent to a finite-length straight coastline.
For (a), the directions of frazil ice and consolidated new ice drift are α = 1◦ and θ = −27◦
respectively, while for (b), α = 11◦ and θ = −17◦. In both plots, Γ denotes the critical frazil ice
trajectory leaving the origin, the solid line depicts the new polynya edge, and the dashed line depicts
the H-constant polynya edge. Lastly, the vertical bold line represents the coastline of the idealized
island, and the angled bold line represents the border of the consolidated new ice pack.

as shown in Morales Maqueda & Willmott (1999). Unfortunately, an equally compact
expression for the area does not exist when H is given by (5.5); in this case, an
exact expression for AT is best determined through direct evaluation of (6.3), but
the resulting expression is complicated and not amenable to analysis and comparison
with (6.5). However, upper and lower bounds on AT can be determined by deriving
upper and lower bounds for the frazil ice collection depth H .

From (5.5) and (5.12) we see that

H = c|U ||(u−U )| sin (θ − φ) sin (γ − φ) +
c[(u−U)dY /dX − (v − V )]2

1 + (dY /dX)2
,

where φ is again the angle between the tangent to the polynya edge and the positive
x-axis, measured in a counterclockwise sense. Simplifying this expression leads to

H = 1
2
c|u||(u−U )|[cos (α− γ)− cos (α+ γ − 2φ)],

so that H is maximized when α+ γ − 2φ = π; at this point H = Hmax, where

Hmax = 1
2
c|u||(u−U )|[1 + cos (α− γ)]. (6.6)

The minimum value, Hmin, occurs at either the point of intersection of the polynya
edge with the coast, where H = Hcoast, or at the point at which the equilibrium
width L is reached, where H = H |L. As dY /dX = V/U and hC = 0 at the coast,
Hcoast = c|u|2 sin2(α − θ), whilst choosing the constant collection depth thickness Hc

so that H |L = Hc gives

Hmin = min [c|u|2 sin2(α− θ), Hc]. (6.7)
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Figure 10. Plots of AT (dotted line) for an idealized island of length D = 25 km, for varying
direction of consolidated new ice drift θ, and the angle between the direction of frazil ice drift and θ
equal to (a) 5◦, (b) 15◦, (c) 28◦, and (d) 35◦. Here |U | = 0.3 m s−1, |u| = 2|U |, and F = 0.27 m day−1.
The continuous lines represent the lower and upper bounds DHminU/F and DHmaxU/F , and the

dashed line represents the area of the H-constant polynya A(c)
T .

From (6.5), the area of the polynya then satisfies

DHminU/F 6 AT 6 DH
maxU/F. (6.8)

Numerical experiments show that these bounds are, unfortunately, rarely tight. How-
ever, notice that if Hmin = Hc, which occurs when

|u| cos (2α− θ) < |U | cos α, (6.9)

then the area of the polynya, AT , exceeds the H-constant polynya area, A(c)
T . For

example, with α − θ = 28◦ and |U |/|u| = 0.5, inequality (6.9) shows that AT > A
(c)
T

when α & 39◦. More generally, AT > A
(c)
T if the inequality α > αcrit is satisfied, where

αcrit is the solution of |u| cos (2αcrit−θ) = |U | cos αcrit lying in the range (0◦, 90◦). When
D = 25 km, figure 10 shows plots of AT with varying direction of consolidated new
ice drift, θ, when the angle between the direction of frazil ice drift and θ is equal
to (a) 5◦; (b) 15◦; (c) 28◦; (d) 35◦. As in previous plots |U | = 0.3 m s−1, |u| = 2|U |,
and F = 0.27 m day−1. Also shown are the upper and lower bounds on the polynya
area, DHmaxU/F and DHminU/F respectively, and the area contained by the H-

constant polynya edge, A(c)
T . Notice that in all cases the difference between AT and

A
(c)
T is relatively small, and that the bounds on the polynya area are, in general, not

tight. When the angle between the directions of drift of frazil ice and consolidated
new ice, (α − θ), is small (≈ 5◦–20◦), the new polynya area is less than A

(c)
T . For

larger values of (α − θ) (≈ 25◦–40◦), AT > A
(c)
T . Notice also that the condition for

AT > A
(c)
T found above, namely that α > αcrit, is not a necessary condition, but only a

sufficient condition. Referring to the example considered above, when α− θ = 28◦, it
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Figure 11. Numerical new and H-constant polynya edge solutions (solid line and dashed line,
respectively), for the St. Lawrence Island Polynya when |U | = 0.4 m s−1, |u| = 0.8 m s−1, and

F = 0.27 m day−1. The dotted line represents the boundary of the consolidated new ice pack. In (a),
α = 18◦, θ = −10◦ and Hc = 0.15 m; in (b), α = −7◦, θ = −35◦ and Hc = 0.17 m, where the vertical
axis is aligned north–south, and all angles are measured positive in the counterclockwise direction
from the southern axis. The axes origin is at 63.6◦N, 171◦W.

is sufficient for α > αcrit ≈ 39◦, and thus θ & 39◦ − 28◦ = 11◦, for AT > A
(c)
T , and this

is verified in figure 10(c); in fact, reference to the figure shows that AT > A
(c)
T for

θ & −19◦.
We conclude this section with a brief discussion of the simulation of the St.

Lawrence Island Polynya (SLIP), in the northern Bering Sea. Figure 11 shows two
simulations of the SLIP for the new collection depth law (solid line) and H-constant
theory (dashed line); figure 11(a) depicts solutions for α = 18◦, θ = −10◦, and
11(b) for α = −7◦, θ = −35◦, where the vertical axis is aligned north–south, and
angles are measured positive counter-clockwise from the southern axis. In both
cases, |u| = 0.8 m s−1, |U | = 0.4 m s−1, and F = 0.27 m day−1. The large values for
the velocities are consistent with previous simulations (Darby et al. 1995; Morales
Maqueda & Willmott 1999). The value of Hc adopted in each of the H-constant
plots is simply the average of the varying H along the extent of the correspond-
ing new polynya edges; this gives Hc = 0.15 m in figure 11(a), and Hc = 0.17 m
in figure 11(b). In both cases, the new polynya edges show good agreement with
their H-constant counterparts, although it is interesting to note the many corners
which appear in the new edge. Their occurrence is not altogether surprising, since
even for the simple coastline geometries examined earlier, the associated polynya
edge displayed at least one corner along its length, showing that the new collec-
tion depth law is extremely sensitive to depth of the frazil ice reaching the polynya
edge. Using realistic coastlines, it is possible that a frazil ice trajectory emanating
from the coast intersects the coastline for a second time. In this case, the en-
closed region bounded by the trajectory and the coastline is assumed to be covered
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in land-fast ice. These regions clearly produce step-discontinuities in the depth of
frazil ice reaching the polynya edge, which contribute to the non-smooth nature
of the solution. Smoothing of the island coastline will reduce the magnitude of
these step-discontinuities, and produce a polynya edge with correspondingly fewer
corners.

7. Summary and concluding remarks
Previous polynya flux models have specified a constant value for the collection

depth, H , of consolidated new ice at the edge of a polynya. A disadvantage of
this approach is that it is possible for the frazil ice thickness within the polynya to
exceed H in unsteady two-dimensional polynya flux models, thereby violating a key
assumption in the derivation of the ice flux balance at the polynya edge. Clearly H is a
quantity which should be determined from an analysis of the physics which describes
the conversion of frazil ice to consolidated new ice at the polynya edge. This paper
derives a parameterization for H which is similar to that obtained for the pile-up
depth of grease ice in a lead by Bauer & Martin (1983). The parameterization for H
is based on the idea that the horizontal gradient of the depth-integrated momentum
flux balances the frazil ice set-up when viewed in a frame of reference which moves
with the velocity of the consolidated new ice. In two dimensions, the parameterization
takes the form H = hC + c|(u − U ) · n|2, where hC is the depth of frazil ice at the
polynya edge C, n is a unit normal to the curve C, u−U is the relative velocity of the
frazil ice with respect to the consolidated new ice region, and c is a constant whose
value is tightly constrained, namely c ≈ 0.665 m−1 s2. Clearly, H > hC , and therefore
flux models which adopt this parameterization for H are robust.

The unsteady one-dimensional problem for the opening of a polynya which incor-
porates the new parameterization of H is studied, and the results are compared with
the H-constant theory (Ou 1988; Morales Maqueda & Willmott 1999). The polynya
edge is found to evolve more slowly to its steady-state width than the H-constant
solution. Further, when the speeds of frazil ice drift (u) and consolidated new ice
drift (U) satisfy U/u ≈ 0.6, this discrepancy in the rate of evolution can, during the
spin-up, lead to significant differences (up to 13% of the final steady-state width) in
the position of the new and H-constant edges. We anticipate that the time-dependent
adjustment of a two-dimensional polynya to changes in the wind stress, for exam-
ple, will also differ significantly from the H-constant theory discussed by Morales
Maqueda & Willmott (1999).

Within the one-dimensional framework, the effect of varying the air temperature
and offshore wind speed on the steady-state width and spin-up time for the polynya
flux model is also examined, and compared with the corresponding H-constant results.
The steady-state width grows quadratically with increasing wind speeds in contrast
with the approximate lack of variation (for wind speeds greater than about 10 m s−1)
exhibited by the H-constant steady-state width. As a consequence, the spin-up time
to the steady-state width increases linearly with increasing wind speed, compared to
a corresponding decrease in the H-constant spin-up time. The changes in steady-state
width and spin-up time due to variations in air temperature are similar to those
exhibited by the H-constant theory: an increase in air temperature produces an
increase in both these quantities.

The structure of steady-state polynyas formed on the lee side of semi-infinite and
finite-length straight coastal barriers are also studied, using the new parameterization
for H . Qualitatively, the polynya edge solutions are similar to those which arise from
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assuming a constant frazil ice collection depth. However, for polynyas adjacent to
both of these coastline configurations, the edges can, in certain circumstances, exhibit
a corner at the point where the equilibrium width is reached. To be precise, if θ
and γ denote the angles (measured positive in a counterclockwise sense) made by the
consolidated new ice velocity U and the relative velocity u − U with the offshore
coordinate axis, respectively, a corner will occur when θ+γ > 0. This is a consequence
of the new parameterization for H , since it is found that for given values of θ and γ,
hC is bounded above by hmax

C (θ, γ). When θ + γ > 0, the only possible polynya edge
solution which satisfies hC < hmax

C (θ, γ) for all points on C is one in which a corner
occurs.

The new parameterization forH also has important consequences for the alongshore
adjustment length scale La, which controls how responsive the steady-state polynya
edge is to perturbations in the coastline profile. A perturbation in the coastline shape
induces a perturbation in the polynya edge. It is found that La provides an e-folding
length scale for the perturbed polynya edge in an alongshore direction which is
dependent upon the sign of θ + γ. When θ + γ = 0, the polynya edge reproduces the
perturbed coastline shape precisely.

The area of a polynya, AT , supported by a finite-length straight coastal barrier,
which can be considered as a prototype island, is also considered. The new parame-
terization for H leads to a complicated expression for AT , which is not amenable to
analysis. Instead, bounds on AT are derived, based on the fact that upper and lower
bounds for H can be obtained. It is found that AT > A

(c)
T , the area of the polynya

associated with a constant value for H , for a relatively large range of α (the angle,
measured positive in a counterclockwise sense, between the frazil ice velocity u and
the offshore coordinate axis) and θ.

Two simulations of the St. Lawrence Island Polynya (SLIP) are also presented,
both with the new collection depth law for consolidated new ice, and, for comparison,
with a constant value for the collection depth obtained by averaging the value of
H along the new edge. Both comparisons result in good agreement between the two
solutions.

Polynya edge solutions found with the new parameterization of the frazil ice
collection depth H prove both qualitatively and quantitatively extremely similar to
those found in the H-constant theory where a constant value for H is used. The only
notable difference between the results of the two approaches is the occurrence, in
certain circumstances, of a discontinuity in the gradient of the new polynya edge. The
new frazil ice collection depth law provides a viable alternative to taking a constant
value for H , particularly in view of the fact that now H > hC , and the flux modelling
approach therefore becomes robust. The effect of including the new parameterization
for H in an unsteady two-dimensional polynya flux model is an important topic for
future investigation.

To date, polynya flux models do not take into account possible feedback processes
between the atmosphere and the polynya. For example, the large ocean to atmosphere
heat flux over a polynya could force mesoscale atmospheric circulations (Dethleff
1994; Lynch et al. 1997; Timmermann, Lemke & Kottmeier 1999), which, in turn,
could modify the surface wind stress and hence the frazil ice trajectories. Polynya–
ocean interactions are crucial in the formation of dense water on the Arctic and
Antarctic continental shelves. Chapman & Gawarkiewicz (1997) examine deep water
production in a steady coastal polynya, while Chapman (1999) develops a model for
deep water formation beneath a coastal polynya whose size and surface buoyancy flux
vary in time. However, in this latter study, the one-dimensional Pease (1987) model is
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used to determine the polynya extent, rather than the two-dimensional unsteady flux
model of Morales Maqueda & Willmott (1999).

A further aspect of polynya–ocean interaction which has been overlooked is the
following. Changes in the ocean surface salinity caused by brine rejection associated
with frazil ice formation will force a baroclinic circulation, which in turn will modify
the frazil ice motion. Frazil ice motion may also be modified by Langmuir circulations,
as pointed out by Smith et al. (1990). To date, no coupled ocean–polynya flux model
incorporates Langmuir circulations, and we suggest that this problem should be
addressed.
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